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ABSTRACT

The Aim of this paper is to introduce a new type of mappings called strongly Regular B-generalized ¢~
continuous mappings and study their basic properties. Also, we establish the relationship between strongly
Regular p-generalized ¢"-continuous mappings and other near continuous mappings in topological spaces.

Keywords : Strongly pgc*-closed sets, Strongly Pgc*-open sets, Strongly pgc*-continuous mappings, Strongly
Rpgc*-continuous mappings.

I. INTRODUCTION

In 1963, Norman Levine introduced semi-open sets in topological spaces. Also in 1970, he introduced the
concept of generalized closed sets. N. Levine introduced the concept of semi-continuous function in 1963. In
1980, Jain introduced totally continuous functions. In 1995, T.M. Nour introduced the concept of totally semi-
continuous functions as a generalization of totally continuous functions. In 2011, S.S. Benchalli et.al introduced
the concept of semi-totally continuous functions in topological spaces. In this paper we introduce Strongly
Regular B-generalized c*-continuous mappings in topological spaces and study their basic properties.

Section 2 deals with the preliminary concepts. In section 3, Strongly Regular p-generalized c*-continuous
mappings are introduced and their basic properties are studied.

II. PRELIMINARIES

Throughout this paper X denotes a topological space on which no separation axiom is assumed. For any subset
A of X, cl(A) denotes the closure of A, int(A) denotes the interior of A. Further X\ A denotes the complement of
A in X. The following definitions are very useful in the subsequent sections.

Definition: 2.1 A subset A of a topological space X is called
i. a semi-open set[9] if ACcl(int(A)) and a semi-closed set if int(cl(A))SA.
ii. a regular-open set [18] if A=int(cl(A)) and a regular-closed set if A=cl(int(A)).
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iii. a m-open set [19] if A is the finite union of regular-open sets and the complement of m-open set is
said to be w-closed.

iv. a B-open set [1] (semi-pre open set[2]) if AScl(int(cl(A))) and a B-closed set (semi-pre closed set) if
int{cl(int(A)))SA.

Definition: 2.2 A subset A of a topological space X is said to be a clopen set if A is both open and closed in X.

Definition: 2.3 [10] A subset A of a topological space X is said to be a c™-open (semi-clopen) set if
int(cl(A))SACScl(int(A)).

Definition: 2.4 [16] A subset A of a topological space X is called a m-generalized f-closed (briefly, mgp-closed)
set if pcl(A)=H whenever AGH and H is w-open in X. The complement of the ngP-closed set is said to be mgp-

open.

Definition: 2.5 [13] A subset A of a topological space X is called a generalized semi pre regular-closed (briefly,
gspr-closed) set if spcl(A)SH whenever ACH and H is regular-open in X. The complement of the gspr-closed
set is said to be gspr-open.

Definition: 2.6 [10] A subset A of a topological space X is said to be a generalized ¢*-closed set  (briefly, gc'™-
closed set) if cl(A)SH whenever ACH and H is c*-open. The complement of the gc*-closed set is gc*-open [11].

Definition: 2.7 [12] A subset A of a topological space X is said to be strongly p-generalized ¢*-closed (briefly,
strongly pgc’-closed) if Bcl(A)SH whenever ACH and H is gc*-open in X. The complement of the strongly pgc*-
closed set is said to be strongly fgc*-open.

Definition: 2.8 A function f: X — Y is called

i, Semi-continuous [9] if the inverse image of every open subset of Y is semi-open in X.

ii. Totally continuous [7] if the inverse image of every open subset of Y is clopen in X.

iii. Strongly continuous [8] if the inverse image of every subset of Y is clopen in X.

iv. Totally semi-continuous [15] if the inverse image of every open subset of Y is semi- clopen in X.

v. Strongly semi-continuous [15] if the inverse image of every subset of Y is semi- clopen in X.

vi. Semi-totally continuous [3] if the inverse image of every semi- open subset of Y is clopen in X.

vii. Semi-totally semi-continuous [6] if the inverse image of every semi-open subset of Y is semi-clopen in X.

viii.S-continuous [14] if the inverse image of every semi-open subset of Y is open in X.

ix. Almost-continuous [17] if the inverse image of every regular-open subset of Y is open in X.

x. Regular set connected [4] if the inverse image of every regular-open subset of Y is clopen in X.

xi. Il-generalized p-continuous [16] (briefly, mgfi-continuous) if the inverse image every closed set in Y is mgp-
closed in X.

xii. Generalized semipre regular-continuous [13] (briefly, gspr-continuous) if the inverse image of every closed
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set in Y is gspr-closed in X.
Definition: 2.9 [5] A space X is said to be locally indiscrete if every closed set is regular closed in X.

III. STRONGLY REGULAR B-GENERALIZED C*-CONTINUOUS MAPPINGS

In this section, we introduce strongly Regular p-generalized ¢"-continuous mappings and study their relation

with near continuous mappings.

Definition: 3.1 A mapping f:X—Y is said to be strongly Regular Bgc*-continuous (briefly, strongly Rfigc’-
continuous) if the inverse image of every regular-closed set in Y is strongly pgc*-closed in X.

Example: 3.2 Let X=[a,b,c,d] with topology t={, {a], {c], {d]. {a.c], (ad}, {c,d}, {a,c.d}, X} and Y=({1,2,3,4] with
topology o={9, {1}, {2}, (3}, {1,2}, (1,3}, {2,3], {34}, {1,2,3}, (23,4}, {1.3,4}, Y}. Define f: X — Y by f(a)=2, f(b)=4,
f(c)=3, f(d)=1. Then the inverse image of every regular-closed set in Y is strongly pgc*-closed in X. Hence f is
strongly Rfgc*-continuous.

Proposition: 3.3 Every continuous mapping is strongly Rfgc*-continuous.

Proof: Assume that £X—Y is continuous. Let V be a regular-closed set in Y. Then V is closed in Y. Since f is
continuous, £'(V) is closed in X. Therefore, by Proposition 3.3 [12], f!(V) is strongly pgc*-closed in X. Hence fis
strongly RBgc’-continuous,

Proposition: 3.4 Every semi-continuous mapping is strongly Rfigc*-continuous.

Proof: Assume that f:X—Y is semi-continuous. Let V be a regular-closed set in Y. Then V is closed in Y. Since f
is semi-continuous, f'(V) is semi-closed in X. Therefore, by Proposition 3.7[12], £!(V) is strongly pgc*-closed in
X. Hence f is strongly Rfigc*-continuous.

Proposition: 3.5 Every totally continuous mapping is strongly Rfigc”-continuous.

Proof: Assume that £X—Y is totally continuous. Let V be a regular-closed set in Y. Then V is closed in Y. Since
f is totally continuous, £(V) is clopen in X. This implies, f!(V) is closed in X. Therefore, by Proposition 3.3[12],
(V) is strongly pgc’-closed in X. Hence f is strongly Rfgc*-continuous.

Proposition: 3.6 Every totally semi-continuous mapping is strongly Rfigc"-continuous.

Proof: Assume that :X—Y is totally semi-continuous. Let V be a regular-closed set in Y. Then V is closed in Y.
Since f is totally semi-continuous, f'(V) is semi-clopen in X. This implies, f'(V) is semi-closed in X. Therefore,
by Proposition 3.7[12], f!(V) is strongly fgc*-closed in X. Hence f is strongly Rfgc*-continuous.

Proposition: 3.7 Every strongly semi- continuous mapping is strongly Rfjgc*-continuous.

International Journal of Scientific Research in Science, Engineering and Technology | www ijsrset.com
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Proof: Assume that f:X—Y is strongly semi-continuous. Let V be a regular-closed set in Y. Then V is closed in
Y. Since f is strongly semi-continuous, f'(V) is semi-clopen in X. This implies, £'(V) is semi-closed in X
Therefore, by Proposition 3.7[12], £'(V) is strongly pgc*-closed in X. Hence fis strongly Rfgc*-continuous.

Proposition: 3.8 Every strongly continuous mapping is strongly Rfge”-continuous.

Proof: Assume that £X—Y is strongly continuous. Let V be a regular-closed set in Y. Then V is closed in Y.
Since f is strongly continuous, £'(V) is clopen in X. This implies, £'(V) is closed in X. Therefore, by Proposition
3.3[12], f'(V) is strongly pgc’-closed in X. Hence f is strongly Rfigc"-continuous.

Proposition: 3.9 Every semi-totally continuous mapping is strongly Rfgc*-continuous.

Proof: Assume that :X—Y is semi-totally continuous. Let V be a regular-closed set in Y. Then V is semi-closed
in Y. Since f is semi- totally continuous, f'(V) is clopen in X. This implies, f'(V) is closed in X Therefore, by
Proposition 3.3[12], £!(V) is strongly pgc*-closed in X. Hence fis strongly Rfgc®-continuous.

Proposition: 3.10 Every semi-totally semi-continuous mapping is strongly Rfigc*-continuous.

Proof: Assume that £:X—Y is semi-totally semi- continuous. Let V be a regular-closed set in Y. Then V is semi-
closed in Y. Since f is semi-totally semi-continuous, f'(V) is semi-clopen in X. This implies, £'(V) is semi-closed
in X. Therefore, by Proposition 3.7[12], f!(V) is strongly pgc*-closed in X. Hence f is strongly Rfgc*-continuous.

Proposition: 3.11 Every s-continuous mapping is strongly Rfgc"-continuous.

Proof: Assume that f:X—Y is s-continuous. Let V be a regular- closed set in Y. Then V is semi-closed in Y.
Since f is s-continuous, £'(V) is closed in X. Therefore, by Proposition 3.3[12], f!(V) is strongly fgc*-closed in
X. Hence f is strongly Rfgc*-continuous.

Proposition: 3.12 Every almost-continuous mapping is strongly Rfjge”-continuous.
Proof: Assume that f:X—Y is almost-continuous. Let V be a regular-closed set in Y. Then f'(V) is closed in X.
Therefore, by Proposition 3.3[12], £1(V) is strongly pgc*-closed in X. Hence f is strongly Rpgc*-continuous.

Proposition: 3,13 Every Regular set-connected mapping is strongly Rfige"-continuous.

Proof: Assume that f:X—Y is Regular set-connected. Let V be a regular-closed set in Y. Then £1(V) is clopen in
X. This implies, £1(V) is closed in X Therefore, by Proposition 3.3(12],  £!(V) is strongly fgc’-closed in X.
Hence f is strongly Rfigc*-continuous.

The Converse of the above Propositions need not be true as shown in the following example.

Example:3.14 Let X={abcd.e] with topology =[@.{a,b].{c.d].{a,b,cd}.X] and Y={1,2,3,45)] with topology
o=(0,{1},(2),01,2).{1,2.3}, {1,2,3,41,{1,2,3,5],Y). Define £X—Y by fa)=1, f(b)=2, f(c)=3, f(d)=4, f(e)=5. Then fis
strongly Rpgc’-continuous. But f is not continuous (semi-continuous, totally semi-continuous, totally
continuous, semi-totally continuous, semi-totally semi-continuous, strongly continuous, strongly semi-
continuous, s-continuous, almost-continuous, regular set-connected), since f'({1})={a}.
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Proposition: 3.15 Every strongly figc"-continuous mapping is strongly Rigc”-continuous.
Proof: Assume that f:X—Y is strongly pgc’-continuous. Let V be a regular-closed set in Y. Then V is closed in Y.

Since f is strongly pgc*-continuous, F'(V) is strongly pge*-closed in X. Hence fis strongly Rpgc"-continuous.
The Converse of the above Proposition need not be true as shown in the following example.

Example: 3.16 Let X={a,bc.d.e] with topology ={0,{a,b}.{c.d}.[a,b,c,d}.X]} and Y=[1,23,4,5] with topology
o={0,(1},{21.01,2},{1,2,3}, {1,2,3,4},(1,2,35},Y]. Define gX—Y by g(a)=g(b)=g(c)=g(d)=5, g(e)=4. Then g is
strongly Rfgc’-continuous. But g'([5})=[a,b,c,d] which is not a strongly pgc'-closed set in X. Therefore, g is not
strongly fgc”-continuous.

Proposition: 3.17 Let X be a topological space and Y be a locally indiscrete space. Then every strongly Rfigc*-
continuous mapping f:X—Y is mg-continuous.

Proof: Assume that :X—Y is strongly RBgc"-continuous. Let V be a closed set in Y. Then V is regular-closed in
Y, since Y is locally indiscrete. Since f is strongly Rpgc*-continuous, £(V) is strongly fge’-closed in X.
Therefore, by Proposition 3.12 [12], £'(V) is mgB-closed in X. Hence f is mgfi-continuous.

Proposition: 3.18 Let X be a topological space and Y be a locally indiscrete space. Then every strongly Rpgc*-
continuous mapping f:X—Y is gspr-continuous.

Proof: Assume that £:X—Y is strongly Rpgc’-continuous. Let V be a closed set in Y. Then V is regular-closed in
Y, since Y is locally indiscrete. Since f is strongly Rfgc*-continuous, f(V) is strongly pge-closed in X.
Therefore, by Proposition 3.13 [12], f!(V) is gspr-closed in X. Hence f is gspr-continuous.

Proposition: 3.19 The mapping £:X—Y is strongly Rfgc"-continuous if and only if the inverse image of every
regular-open set in Y is strongly pgc”-open in X,

Proof: Assume that f:X—Y is strongly Rgc’-continuous. Let U be a regular-open set in Y. Then Y\U is regular-
closed in Y. This implies, f'(Y\U) is strongly pgc*-closed in X. Since FI(Y\U)=X\f'(U), we have X\f'(U)
is strongly pge’-closed in X. This implies, f '(U) is strongly pgc*-open in X. Conversely, assume that f'(U) is
strongly Pgc’-open in X for every regular-open set U in Y. Let V be a regular-closed set in Y. Then Y\V is
regular-open in Y. Therefore, £1(Y\V) is strongly Pgc*-open in X. That is, X\f!(V) is strongly pgc"-open in
X. This implies, £'(V) is strongly fgc’-closed in X. Therefore, fis strongly Rpgc*-continuous.

Remark: 3,20 Composition of two strongly Regular fgc*-continuous mappings need not be strongly Regular
pgc’-continuous. For example, let X={ab,c.d}, Y={1,23.4] Z=[p,q,r.s,t}. Then, clearly v={®,{a},[b},{a,b].(a.c},
{ab.c},X} is a topology on X, a=[@, {1], (2}, {3}, (1,2}, (1,3}, (2.3}, (3,4}, {1,2,3], (2,3,4], {1,3,4],Y] is a topology on
Y and n={@,{p}, (sL.{t}.{p.s).{p.t}.s.t], {p:s.t].Z] is a topology on Z. Define f: X — Y by f(a)= f(d)=1, f(b)=
f(c)=2and g : Y — Z by g(1)=p, g(2)=g(3)= g(4)=t. Then f and g are strongly Rpgc’-continuous. Consider
the regular-closed set {p,q,r] in Z. Then (gef) '({p.q.r})= (g '([p.q.r))=Ff'([1})={a.d}, which is not a
strongly Pgc*-closed set in X. Therefore, gef is not strongly Rfigc-continuous.
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Proposition: 3.21 If f:X—Y is strongly fgc"-continuous and g:Y—Z is continuous, then gef:X—Z is strongly
Rfigc™-continuous.

Proof: Assume that £X—Y is strongly fgc*-continuous and g:Y—Z is continuous. Let V be a regular-closed set
in Z. Then g'(V) is closed in Y. Therefore, f'(g"(V)) is strongly Pge’-closed in X. That is, (gof) '(V) is strongly
pge*-closed in X. Hence gef is strongly Rfige™-continuous.

Proposition: 3.22 If f:X—Y is strongly pgc*-continuous and g:Y—Z is totally continuous, then gef:X—Z is
strongly Rpgc’-continuous.

Proof: Assume that f:X—Y is strongly Pgc’-continuous and g:Y—Z is totally-continuous. Let V be a regular-
closed set in Z. Then g'(V) is clopen in Y. This implies, g '(V) is closed in Y. Therefore, f'(g'(V)) is strongly
Bgc*-closed in X. That is, (gof) '(V) is strongly pgc*-closed in X. Hence gof is strongly Rpgc*-continuous.

Proposition: 3.23 If f:X—Y is strongly pgc’-continuous and g:Y—Z is strongly continuous, then gof:X—Z is
strongly Rfgc*-continuous.

Proof: Assume that £:X—Y is strongly pgc*-continuous and g:Y—Z is strongly continuous. Let V be a regular-
closed set in Z. Then g'(V) is clopen in Y. This implies, g '(V) is closed in Y. Therefore, f'(g'(V)) is strongly
pgc*-closed in X. That is, (gef) (V) is strongly pgc*-closed in X. Hence gef is strongly Rpgc*-continuous.

Proposition: 3.24 If f:X—Y is strongly fgc*-continuous and g:Y—Z is semi-totally continuous, then gof:X—Z is
strongly Rpgc®-continuous.

Proof: Assume that £X—Y is strongly pgc’-continuous and g:Y—Z is semi-totally continuous. Let V be a
regular-closed set in Z. Then g'(V) is clopen in Y. This implies, g'(V) is closed in Y. Therefore, f'(g'(V)) is
strongly pgc*-closed in X. That is, (gof) '(V) is strongly pgc*-closed in X. Hence gof is strongly Rpgc*-continuous.

Proposition: 3.25 If f:X—Y is strongly Rfige*-continuous and g:Y—Z is totally continuous, then gef:X—Z is
strongly Rfigc*-continuous,

Proof Assume that £:X—Y is strongly Rpgc’-continuous and g:Y—Z is totally-continuous. Let V be a regular-
closed set in Z. Then g (V) is clopen in Y. This implies, g'(V) is regular-closed in Y. Therefore, f'(g'(V)) is
strongly pgc’-closed in X. That is, (gef) '(V) is strongly pge*-closed in X. Hence gefis strongly Rpgc*-continuous.

Proposition: 3.26 If f.X—Y is strongly Rfgc"-continuous and g:Y—Z is strongly continuous, then gof:X—Z is
strongly Rfgc*-continuous.

Proof Assume that £:X—Y is strongly Rfgc’-continuous and g:Y—Z is strongly continuous. Let V be a regular-
closed set in Z. Then g'(V) is clopen in Y. This implies, g'(V) is regular-closed in Y. Therefore, fi(g'(V)) is
strongly pgc’-closed in X. That is, (gef) '(V) is strongly fgc’-closed in X. Hence gef is strongly Rfgc*-continuous.

Proposition: 3.27 If £X—Y is strongly Rpgc’-continuous and g:Y—Z is semi-totally continuous, then gef:X—Z
is strongly Rpgc®-continuous.
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Proof: Assume that f:X—Y is strongly Rpgc’-continuous and g:Y—Z is semi-totally continuous. Let V be a
regular-closed set in Z. Then g'(V) is clopen in Y. This implies, g '(V) is regular-closed in Y. Therefore, f'(g
\(V)) is strongly Pgc’-closed in X. That is, (gef)'(V) is strongly pge-closed in X. Hence gof is strongly Rfgc®-

continuous.

Proposition: 3.28 If f:X—Y is strongly Rfgc*-continuous and g:Y—Z is totally continuous, then gef:X—Z is
strongly fgc’-continuous.

Proof: Assume that f:X—Y is strongly Rpgc*-continuous and g:Y—Z is totally-continuous. Let V be a closed set
in Z. Then g'(V) is clopen in Y. This implies, g '(V) is regular-closed in Y. Therefore, f'(g'(V)) is strongly fgc*-
closed in X. That is, (gof) '(V) is strongly pgc’-closed in X. Hence gof is strongly figc*-continuous.

Proposition: 3.29 If f:X—Y is strongly Rpgc-continuous and g:Y—Z is strongly continuous, then gef:X—Z is
strongly fgc’-continuous.

Proof: Assume that £X—Y is strongly Rfgc’-continuous and g:Y—Z is strongly continuous. Let V be a closed
set in Z. Then g'(V) is clopen in Y. This implies, g (V) is regular-closed in Y. Therefore, £'(g'(V)) is strongly
Bge*-closed in X. That is, (gof) '(V) is strongly pgc*-closed in X. Hence gof is strongly pgc’-continuous.

Proposition: 3.30 If f:X—Y is strongly Rpgc*-continuous and g:Y—Z is semi-totally continuous, then gof:X—Z
is strongly fgc*-continuous.

Proof: Assume that £:X—Y is strongly Rpgc-continuous and g:Y—Z is semi-totally continuous. Let V be a
closed set in Z. This implies, V is semi-closed in Z. Therefore, g'(V) is clopen in Y. This implies, g'(V) is
regular-closed in Y. Therefore, f'(g'(V)) is strongly pgc*-closed in X. That is, (gof)'(V) is strongly pgc*-closed in
X. Hence gof is strongly pgc*-continuous.

IV. CONCLUSION

In this paper we have introduced strongly Regular f-generalized c*-continuous mappings in topological spaces
and studied some of their basic properties. Also, we have discussed the relation of strongly Regular f-
generalized c*-continuous mappings with near continuous mappings in topological spaces.
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