

Print ISSN : 2395-1990
Online ISSN : 2394-4099

www.ijsrset.com

International Conference on Advances in Mathematical Sciences ICAMS2021

Organised by
Department of Mathematics,
K. D. K. College of Engineering
Great Nag Road, Nandanvan,
Nagpur, Maharashtra, India

VOLUME 9, ISSUE 7, SEPTEMBER-OCTOBER-2021

**INTERNATIONAL JOURNAL OF SCIENTIFIC
RESEARCH IN SCIENCE,
ENGINEERING AND TECHNOLOGY**

International Conference on Advances in Mathematical Sciences

ICAMS2021

4th, 5th, 6th October 2021

Organised by

**Department of Mathematics, K. D. K. College of Engineering
Great Nag Road, Nandanvan, Nagpur, Maharashtra, India**

In Association with

**International Journal of Scientific Research in Science, Engineering and
Technology**

Online ISSN : 2394-4099 | Print ISSN : 2395-1990

Volume 9, Issue 7, September-October-2021

Published By

website : www.technoscienceacademy.com

CONTENTS

Sr. No	Article/Paper	Page No
1	Formulation of Solutions of a Special Standard Quadratic Congruence modulo a Prime Multiple of Powered Even Prime B. M. Roy, A. A. Qureshi	01-04
2	Common Fixed Point Theorem for Six Weakly Compatible Mappings Satisfying Generalized Contractive Condition of Integral Type Kavita B. Bajpai, Manjusha P. Gandhi, Smita S. Kshirsagar, Satish J. Tiwari	05-14
3	Some Generalization of Certain Commutativity Theorems on Semi-Prime Rings Ashok.R.Dhole, Ranjana.A.Dhole	15-19
4	Analysis of Laplace Transform & Its Specific Applications in Engineering Indrajeet Varhadpande, Kirti Sahu, V.R.K. Murthy	20-25
5	Application of Game Theory Model using Regression for the Graph Analytics Parameters of the Social Networking Rajeshri Puranik, Dr. Sharad Pokley	26-34
6	Significance of Meruprastar Rishikumar K. Agrawal, Sanjay Deshpande	35-40
7	Analytical Solutions of the Fokker-Planck Equation by Laplace Decomposition Method S. S. Handibag, R. M. Wayal	41-46
8	Five Dimensional Bianchi Type I Cosmology in $f(R, T)$ Gravity S. D. Deo	47-55
9	On Strongly $R\beta gc^*$-Continuous Mappings in Topological Spaces J. Maheswari, S. Malathi	56-63
10	Parameter Analysis of 'ATM Model' Rishikumar K. Agrawal, Sudha Rani Dehri	64-68

On Strongly $R\beta gc^*$ -Continuous Mappings in Topological Spaces

J. Maheswari¹, S. Malathi¹

¹Assistant Professor, Department of Mathematics, Wavoo Wajeeha Women's College of Arts and Science, Kayalpatnam -628204, Tamil Nadu, India

ABSTRACT

The Aim of this paper is to introduce a new type of mappings called strongly Regular β -generalized c^* -continuous mappings and study their basic properties. Also, we establish the relationship between strongly Regular β -generalized c^* -continuous mappings and other near continuous mappings in topological spaces.

Keywords : Strongly βgc^* -closed sets, Strongly βgc^* -open sets, Strongly βgc^* -continuous mappings, Strongly $R\beta gc^*$ -continuous mappings.

I. INTRODUCTION

In 1963, Norman Levine introduced semi-open sets in topological spaces. Also in 1970, he introduced the concept of generalized closed sets. N. Levine introduced the concept of semi-continuous function in 1963. In 1980, Jain introduced totally continuous functions. In 1995, T.M. Nour introduced the concept of totally semi-continuous functions as a generalization of totally continuous functions. In 2011, S.S. Benchalli et.al introduced the concept of semi-totally continuous functions in topological spaces. In this paper we introduce Strongly Regular β -generalized c^* -continuous mappings in topological spaces and study their basic properties.

Section 2 deals with the preliminary concepts. In section 3, Strongly Regular β -generalized c^* -continuous mappings are introduced and their basic properties are studied.

II. PRELIMINARIES

Throughout this paper X denotes a topological space on which no separation axiom is assumed. For any subset A of X , $cl(A)$ denotes the closure of A , $int(A)$ denotes the interior of A . Further $X \setminus A$ denotes the complement of A in X . The following definitions are very useful in the subsequent sections.

Definition: 2.1 A subset A of a topological space X is called

- a semi-open set [9] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$.
- a regular-open set [18] if $A = int(cl(A))$ and a regular-closed set if $A = cl(int(A))$.

- iii. a π -open set [19] if A is the finite union of regular-open sets and the complement of π -open set is said to be π -closed.
- iv. a β -open set [1] (semi-pre open set[2]) if $A \subseteq \text{cl}(\text{int}(\text{cl}(A)))$ and a β -closed set (semi-pre closed set) if $\text{int}(\text{cl}(\text{int}(A))) \subseteq A$.

Definition: 2.2 A subset A of a topological space X is said to be a clopen set if A is both open and closed in X .

Definition: 2.3 [10] A subset A of a topological space X is said to be a c^* -open (semi-clopen) set if $\text{int}(\text{cl}(A)) \subseteq A \subseteq \text{cl}(\text{int}(A))$.

Definition: 2.4 [16] A subset A of a topological space X is called a π -generalized β -closed (briefly, $\pi g\beta$ -closed) set if $\beta\text{cl}(A) \subseteq H$ whenever $A \subseteq H$ and H is π -open in X . The complement of the $\pi g\beta$ -closed set is said to be $\pi g\beta$ -open.

Definition: 2.5 [13] A subset A of a topological space X is called a generalized semi pre regular-closed (briefly, gspr-closed) set if $\text{spcl}(A) \subseteq H$ whenever $A \subseteq H$ and H is regular-open in X . The complement of the gspr-closed set is said to be gspr-open.

Definition: 2.6 [10] A subset A of a topological space X is said to be a generalized c^* -closed set (briefly, gc^* -closed set) if $\text{cl}(A) \subseteq H$ whenever $A \subseteq H$ and H is c^* -open. The complement of the gc^* -closed set is gc^* -open [11].

Definition: 2.7 [12] A subset A of a topological space X is said to be strongly β -generalized c^* -closed (briefly, strongly βgc^* -closed) if $\beta\text{cl}(A) \subseteq H$ whenever $A \subseteq H$ and H is gc^* -open in X . The complement of the strongly βgc^* -closed set is said to be strongly βgc^* -open.

Definition: 2.8 A function $f: X \rightarrow Y$ is called

- i. Semi-continuous [9] if the inverse image of every open subset of Y is semi-open in X .
- ii. Totally continuous [7] if the inverse image of every open subset of Y is clopen in X .
- iii. Strongly continuous [8] if the inverse image of every subset of Y is clopen in X .
- iv. Totally semi-continuous [15] if the inverse image of every open subset of Y is semi-clopen in X .
- v. Strongly semi-continuous [15] if the inverse image of every subset of Y is semi-clopen in X .
- vi. Semi-totally continuous [3] if the inverse image of every semi-open subset of Y is clopen in X .
- vii. Semi-totally semi-continuous [6] if the inverse image of every semi-open subset of Y is semi-clopen in X .
- viii. S-continuous [14] if the inverse image of every semi-open subset of Y is open in X .
- ix. Almost-continuous [17] if the inverse image of every regular-open subset of Y is open in X .
- x. Regular set connected [4] if the inverse image of every regular-open subset of Y is clopen in X .
- xi. Π -generalized β -continuous [16] (briefly, $\pi g\beta$ -continuous) if the inverse image every closed set in Y is $\pi g\beta$ -closed in X .
- xii. Generalized semipre regular-continuous [13] (briefly, gspr-continuous) if the inverse image of every closed

set in Y is g_{spr} -closed in X .

Definition: 2.9 [5] A space X is said to be locally indiscrete if every closed set is regular closed in X .

III. STRONGLY REGULAR β -GENERALIZED C^* -CONTINUOUS MAPPINGS

In this section, we introduce strongly Regular β -generalized C^* -continuous mappings and study their relation with near continuous mappings.

Definition: 3.1 A mapping $f: X \rightarrow Y$ is said to be strongly Regular βgc^* -continuous (briefly, strongly $R\beta gc^*$ -continuous) if the inverse image of every regular-closed set in Y is strongly βgc^* -closed in X .

Example: 3.2 Let $X = \{a, b, c, d\}$ with topology $\tau = \{\emptyset, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, c, d\}, X\}$ and $Y = \{1, 2, 3, 4\}$ with topology $\sigma = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}, \{1, 2, 3\}, \{2, 3, 4\}, \{1, 3, 4\}, Y\}$. Define $f: X \rightarrow Y$ by $f(a) = 2, f(b) = 4, f(c) = 3, f(d) = 1$. Then the inverse image of every regular-closed set in Y is strongly βgc^* -closed in X . Hence f is strongly $R\beta gc^*$ -continuous.

Proposition: 3.3 Every continuous mapping is strongly $R\beta gc^*$ -continuous.

Proof: Assume that $f: X \rightarrow Y$ is continuous. Let V be a regular-closed set in Y . Then V is closed in Y . Since f is continuous, $f^{-1}(V)$ is closed in X . Therefore, by Proposition 3.3 [12], $f^{-1}(V)$ is strongly βgc^* -closed in X . Hence f is strongly $R\beta gc^*$ -continuous.

Proposition: 3.4 Every semi-continuous mapping is strongly $R\beta gc^*$ -continuous.

Proof: Assume that $f: X \rightarrow Y$ is semi-continuous. Let V be a regular-closed set in Y . Then V is closed in Y . Since f is semi-continuous, $f^{-1}(V)$ is semi-closed in X . Therefore, by Proposition 3.7[12], $f^{-1}(V)$ is strongly βgc^* -closed in X . Hence f is strongly $R\beta gc^*$ -continuous.

Proposition: 3.5 Every totally continuous mapping is strongly $R\beta gc^*$ -continuous.

Proof: Assume that $f: X \rightarrow Y$ is totally continuous. Let V be a regular-closed set in Y . Then V is closed in Y . Since f is totally continuous, $f^{-1}(V)$ is clopen in X . This implies, $f^{-1}(V)$ is closed in X . Therefore, by Proposition 3.3[12], $f^{-1}(V)$ is strongly βgc^* -closed in X . Hence f is strongly $R\beta gc^*$ -continuous.

Proposition: 3.6 Every totally semi-continuous mapping is strongly $R\beta gc^*$ -continuous.

Proof: Assume that $f: X \rightarrow Y$ is totally semi-continuous. Let V be a regular-closed set in Y . Then V is closed in Y . Since f is totally semi-continuous, $f^{-1}(V)$ is semi-clopen in X . This implies, $f^{-1}(V)$ is semi-closed in X . Therefore, by Proposition 3.7[12], $f^{-1}(V)$ is strongly βgc^* -closed in X . Hence f is strongly $R\beta gc^*$ -continuous.

Proposition: 3.7 Every strongly semi-continuous mapping is strongly $R\beta gc^*$ -continuous.

Proof: Assume that $f:X \rightarrow Y$ is strongly semi-continuous. Let V be a regular-closed set in Y . Then V is closed in Y . Since f is strongly semi-continuous, $f^{-1}(V)$ is semi-clopen in X . This implies, $f^{-1}(V)$ is semi-closed in X . Therefore, by Proposition 3.7[12], $f^{-1}(V)$ is strongly βgc^* -closed in X . Hence f is strongly $R\beta gc^*$ -continuous.

Proposition: 3.8 Every strongly continuous mapping is strongly $R\beta gc^*$ -continuous.

Proof: Assume that $f:X \rightarrow Y$ is strongly continuous. Let V be a regular-closed set in Y . Then V is closed in Y . Since f is strongly continuous, $f^{-1}(V)$ is clopen in X . This implies, $f^{-1}(V)$ is closed in X . Therefore, by Proposition 3.3[12], $f^{-1}(V)$ is strongly βgc^* -closed in X . Hence f is strongly $R\beta gc^*$ -continuous.

Proposition: 3.9 Every semi-totally continuous mapping is strongly $R\beta gc^*$ -continuous.

Proof: Assume that $f:X \rightarrow Y$ is semi-totally continuous. Let V be a regular-closed set in Y . Then V is semi-closed in Y . Since f is semi-totally continuous, $f^{-1}(V)$ is clopen in X . This implies, $f^{-1}(V)$ is closed in X . Therefore, by Proposition 3.3[12], $f^{-1}(V)$ is strongly βgc^* -closed in X . Hence f is strongly $R\beta gc^*$ -continuous.

Proposition: 3.10 Every semi-totally semi-continuous mapping is strongly $R\beta gc^*$ -continuous.

Proof: Assume that $f:X \rightarrow Y$ is semi-totally semi-continuous. Let V be a regular-closed set in Y . Then V is semi-closed in Y . Since f is semi-totally semi-continuous, $f^{-1}(V)$ is semi-clopen in X . This implies, $f^{-1}(V)$ is semi-closed in X . Therefore, by Proposition 3.7[12], $f^{-1}(V)$ is strongly βgc^* -closed in X . Hence f is strongly $R\beta gc^*$ -continuous.

Proposition: 3.11 Every s-continuous mapping is strongly $R\beta gc^*$ -continuous.

Proof: Assume that $f:X \rightarrow Y$ is s-continuous. Let V be a regular-closed set in Y . Then V is semi-closed in Y . Since f is s-continuous, $f^{-1}(V)$ is closed in X . Therefore, by Proposition 3.3[12], $f^{-1}(V)$ is strongly βgc^* -closed in X . Hence f is strongly $R\beta gc^*$ -continuous.

Proposition: 3.12 Every almost-continuous mapping is strongly $R\beta gc^*$ -continuous.

Proof: Assume that $f:X \rightarrow Y$ is almost-continuous. Let V be a regular-closed set in Y . Then $f^{-1}(V)$ is closed in X . Therefore, by Proposition 3.3[12], $f^{-1}(V)$ is strongly βgc^* -closed in X . Hence f is strongly $R\beta gc^*$ -continuous.

Proposition: 3.13 Every Regular set-connected mapping is strongly $R\beta gc^*$ -continuous.

Proof: Assume that $f:X \rightarrow Y$ is Regular set-connected. Let V be a regular-closed set in Y . Then $f^{-1}(V)$ is clopen in X . This implies, $f^{-1}(V)$ is closed in X . Therefore, by Proposition 3.3[12], $f^{-1}(V)$ is strongly βgc^* -closed in X . Hence f is strongly $R\beta gc^*$ -continuous.

The Converse of the above Propositions need not be true as shown in the following example.

Example: 3.14 Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{\emptyset, [a, b], [c, d], [a, b, c, d], X\}$ and $Y = \{1, 2, 3, 4, 5\}$ with topology $\sigma = \{\emptyset, [1], [2], [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 3, 5], Y\}$. Define $f: X \rightarrow Y$ by $f(a) = 1, f(b) = 2, f(c) = 3, f(d) = 4, f(e) = 5$. Then f is strongly $R\beta gc^*$ -continuous. But f is not continuous (semi-continuous, totally semi-continuous, totally continuous, semi-totally continuous, semi-totally semi-continuous, strongly continuous, strongly semi-continuous, s-continuous, almost-continuous, regular set-connected), since $f^{-1}(\{1\}) = [a]$.

Proposition: 3.15 Every strongly βgc^* -continuous mapping is strongly $R\beta\text{gc}^*$ -continuous.

Proof: Assume that $f:X \rightarrow Y$ is strongly βgc^* -continuous. Let V be a regular-closed set in Y . Then V is closed in Y . Since f is strongly βgc^* -continuous, $f^{-1}(V)$ is strongly βgc^* -closed in X . Hence f is strongly $R\beta\text{gc}^*$ -continuous. The Converse of the above Proposition need not be true as shown in the following example.

Example: 3.16 Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$ and $Y = \{1, 2, 3, 4, 5\}$ with topology $\sigma = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}, \{1, 2, 3, 5\}, Y\}$. Define $g: X \rightarrow Y$ by $g(a) = g(b) = g(c) = g(d) = 5, g(e) = 4$. Then g is strongly $R\beta\text{gc}^*$ -continuous. But $g^{-1}(\{5\}) = \{a, b, c, d\}$ which is not a strongly βgc^* -closed set in X . Therefore, g is not strongly βgc^* -continuous.

Proposition: 3.17 Let X be a topological space and Y be a locally indiscrete space. Then every strongly $R\beta\text{gc}^*$ -continuous mapping $f: X \rightarrow Y$ is πgb -continuous.

Proof: Assume that $f: X \rightarrow Y$ is strongly $R\beta\text{gc}^*$ -continuous. Let V be a closed set in Y . Then V is regular-closed in Y , since Y is locally indiscrete. Since f is strongly $R\beta\text{gc}^*$ -continuous, $f^{-1}(V)$ is strongly βgc^* -closed in X . Therefore, by Proposition 3.12 [12], $f^{-1}(V)$ is πgb -closed in X . Hence f is πgb -continuous.

Proposition: 3.18 Let X be a topological space and Y be a locally indiscrete space. Then every strongly $R\beta\text{gc}^*$ -continuous mapping $f: X \rightarrow Y$ is gspr -continuous.

Proof: Assume that $f: X \rightarrow Y$ is strongly $R\beta\text{gc}^*$ -continuous. Let V be a closed set in Y . Then V is regular-closed in Y , since Y is locally indiscrete. Since f is strongly $R\beta\text{gc}^*$ -continuous, $f^{-1}(V)$ is strongly βgc^* -closed in X . Therefore, by Proposition 3.13 [12], $f^{-1}(V)$ is gspr -closed in X . Hence f is gspr -continuous.

Proposition: 3.19 The mapping $f: X \rightarrow Y$ is strongly $R\beta\text{gc}^*$ -continuous if and only if the inverse image of every regular-open set in Y is strongly βgc^* -open in X .

Proof: Assume that $f: X \rightarrow Y$ is strongly $R\beta\text{gc}^*$ -continuous. Let U be a regular-open set in Y . Then $Y \setminus U$ is regular-closed in Y . This implies, $f^{-1}(Y \setminus U)$ is strongly βgc^* -closed in X . Since $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$, we have $X \setminus f^{-1}(U)$ is strongly βgc^* -closed in X . This implies, $f^{-1}(U)$ is strongly βgc^* -open in X . Conversely, assume that $f^{-1}(U)$ is strongly βgc^* -open in X for every regular-open set U in Y . Let V be a regular-closed set in Y . Then $Y \setminus V$ is regular-open in Y . Therefore, $f^{-1}(Y \setminus V)$ is strongly βgc^* -open in X . That is, $X \setminus f^{-1}(V)$ is strongly βgc^* -open in X . This implies, $f^{-1}(V)$ is strongly βgc^* -closed in X . Therefore, f is strongly $R\beta\text{gc}^*$ -continuous.

Remark: 3.20 Composition of two strongly Regular βgc^* -continuous mappings need not be strongly Regular βgc^* -continuous. For example, let $X = \{a, b, c, d\}$, $Y = \{1, 2, 3, 4\}$, $Z = \{p, q, r, s, t\}$. Then, clearly $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$ is a topology on X , $\sigma = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}, \{1, 2, 3\}, \{2, 3, 4\}, \{1, 3, 4\}, Y\}$ is a topology on Y and $\eta = \{\emptyset, \{p\}, \{s\}, \{t\}, \{p, s\}, \{p, t\}, \{s, t\}, \{p, s, t\}, Z\}$ is a topology on Z . Define $f: X \rightarrow Y$ by $f(a) = f(d) = 1, f(b) = f(c) = 2$ and $g: Y \rightarrow Z$ by $g(1) = p, g(2) = g(3) = g(4) = t$. Then f and g are strongly $R\beta\text{gc}^*$ -continuous. Consider the regular-closed set $\{p, q, r\}$ in Z . Then $(g \circ f)^{-1}(\{p, q, r\}) = f^{-1}(g^{-1}(\{p, q, r\})) = f^{-1}(\{1\}) = \{a, d\}$, which is not a strongly βgc^* -closed set in X . Therefore, $g \circ f$ is not strongly $R\beta\text{gc}^*$ -continuous.

Proposition: 3.21 If $f:X \rightarrow Y$ is strongly βgc^* -continuous and $g:Y \rightarrow Z$ is continuous, then $g \circ f:X \rightarrow Z$ is strongly $R\beta gc^*$ -continuous.

Proof: Assume that $f:X \rightarrow Y$ is strongly βgc^* -continuous and $g:Y \rightarrow Z$ is continuous. Let V be a regular-closed set in Z . Then $g^{-1}(V)$ is closed in Y . Therefore, $f^{-1}(g^{-1}(V))$ is strongly βgc^* -closed in X . That is, $(g \circ f)^{-1}(V)$ is strongly βgc^* -closed in X . Hence $g \circ f$ is strongly $R\beta gc^*$ -continuous.

Proposition: 3.22 If $f:X \rightarrow Y$ is strongly βgc^* -continuous and $g:Y \rightarrow Z$ is totally continuous, then $g \circ f:X \rightarrow Z$ is strongly $R\beta gc^*$ -continuous.

Proof: Assume that $f:X \rightarrow Y$ is strongly βgc^* -continuous and $g:Y \rightarrow Z$ is totally-continuous. Let V be a regular-closed set in Z . Then $g^{-1}(V)$ is clopen in Y . This implies, $g^{-1}(V)$ is closed in Y . Therefore, $f^{-1}(g^{-1}(V))$ is strongly βgc^* -closed in X . That is, $(g \circ f)^{-1}(V)$ is strongly βgc^* -closed in X . Hence $g \circ f$ is strongly $R\beta gc^*$ -continuous.

Proposition: 3.23 If $f:X \rightarrow Y$ is strongly βgc^* -continuous and $g:Y \rightarrow Z$ is strongly continuous, then $g \circ f:X \rightarrow Z$ is strongly $R\beta gc^*$ -continuous.

Proof: Assume that $f:X \rightarrow Y$ is strongly βgc^* -continuous and $g:Y \rightarrow Z$ is strongly continuous. Let V be a regular-closed set in Z . Then $g^{-1}(V)$ is clopen in Y . This implies, $g^{-1}(V)$ is closed in Y . Therefore, $f^{-1}(g^{-1}(V))$ is strongly βgc^* -closed in X . That is, $(g \circ f)^{-1}(V)$ is strongly βgc^* -closed in X . Hence $g \circ f$ is strongly $R\beta gc^*$ -continuous.

Proposition: 3.24 If $f:X \rightarrow Y$ is strongly βgc^* -continuous and $g:Y \rightarrow Z$ is semi-totally continuous, then $g \circ f:X \rightarrow Z$ is strongly $R\beta gc^*$ -continuous.

Proof: Assume that $f:X \rightarrow Y$ is strongly βgc^* -continuous and $g:Y \rightarrow Z$ is semi-totally continuous. Let V be a regular-closed set in Z . Then $g^{-1}(V)$ is clopen in Y . This implies, $g^{-1}(V)$ is closed in Y . Therefore, $f^{-1}(g^{-1}(V))$ is strongly βgc^* -closed in X . That is, $(g \circ f)^{-1}(V)$ is strongly βgc^* -closed in X . Hence $g \circ f$ is strongly $R\beta gc^*$ -continuous.

Proposition: 3.25 If $f:X \rightarrow Y$ is strongly $R\beta gc^*$ -continuous and $g:Y \rightarrow Z$ is totally continuous, then $g \circ f:X \rightarrow Z$ is strongly $R\beta gc^*$ -continuous.

Proof: Assume that $f:X \rightarrow Y$ is strongly $R\beta gc^*$ -continuous and $g:Y \rightarrow Z$ is totally-continuous. Let V be a regular-closed set in Z . Then $g^{-1}(V)$ is clopen in Y . This implies, $g^{-1}(V)$ is regular-closed in Y . Therefore, $f^{-1}(g^{-1}(V))$ is strongly βgc^* -closed in X . That is, $(g \circ f)^{-1}(V)$ is strongly βgc^* -closed in X . Hence $g \circ f$ is strongly $R\beta gc^*$ -continuous.

Proposition: 3.26 If $f:X \rightarrow Y$ is strongly $R\beta gc^*$ -continuous and $g:Y \rightarrow Z$ is strongly continuous, then $g \circ f:X \rightarrow Z$ is strongly $R\beta gc^*$ -continuous.

Proof: Assume that $f:X \rightarrow Y$ is strongly $R\beta gc^*$ -continuous and $g:Y \rightarrow Z$ is strongly continuous. Let V be a regular-closed set in Z . Then $g^{-1}(V)$ is clopen in Y . This implies, $g^{-1}(V)$ is regular-closed in Y . Therefore, $f^{-1}(g^{-1}(V))$ is strongly βgc^* -closed in X . That is, $(g \circ f)^{-1}(V)$ is strongly βgc^* -closed in X . Hence $g \circ f$ is strongly $R\beta gc^*$ -continuous.

Proposition: 3.27 If $f:X \rightarrow Y$ is strongly $R\beta gc^*$ -continuous and $g:Y \rightarrow Z$ is semi-totally continuous, then $g \circ f:X \rightarrow Z$ is strongly $R\beta gc^*$ -continuous.

Proof: Assume that $f:X \rightarrow Y$ is strongly $R\beta gc^*$ -continuous and $g:Y \rightarrow Z$ is semi-totally continuous. Let V be a regular-closed set in Z . Then $g^{-1}(V)$ is clopen in Y . This implies, $g^{-1}(V)$ is regular-closed in Y . Therefore, $f^{-1}(g^{-1}(V))$ is strongly βgc^* -closed in X . That is, $(g \circ f)^{-1}(V)$ is strongly βgc^* -closed in X . Hence $g \circ f$ is strongly $R\beta gc^*$ -continuous.

Proposition: 3.28 If $f:X \rightarrow Y$ is strongly $R\beta gc^*$ -continuous and $g:Y \rightarrow Z$ is totally continuous, then $g \circ f:X \rightarrow Z$ is strongly βgc^* -continuous.

Proof: Assume that $f:X \rightarrow Y$ is strongly $R\beta gc^*$ -continuous and $g:Y \rightarrow Z$ is totally-continuous. Let V be a closed set in Z . Then $g^{-1}(V)$ is clopen in Y . This implies, $g^{-1}(V)$ is regular-closed in Y . Therefore, $f^{-1}(g^{-1}(V))$ is strongly βgc^* -closed in X . That is, $(g \circ f)^{-1}(V)$ is strongly βgc^* -closed in X . Hence $g \circ f$ is strongly βgc^* -continuous.

Proposition: 3.29 If $f:X \rightarrow Y$ is strongly $R\beta gc^*$ -continuous and $g:Y \rightarrow Z$ is strongly continuous, then $g \circ f:X \rightarrow Z$ is strongly βgc^* -continuous.

Proof: Assume that $f:X \rightarrow Y$ is strongly $R\beta gc^*$ -continuous and $g:Y \rightarrow Z$ is strongly continuous. Let V be a closed set in Z . Then $g^{-1}(V)$ is clopen in Y . This implies, $g^{-1}(V)$ is regular-closed in Y . Therefore, $f^{-1}(g^{-1}(V))$ is strongly βgc^* -closed in X . That is, $(g \circ f)^{-1}(V)$ is strongly βgc^* -closed in X . Hence $g \circ f$ is strongly βgc^* -continuous.

Proposition: 3.30 If $f:X \rightarrow Y$ is strongly $R\beta gc^*$ -continuous and $g:Y \rightarrow Z$ is semi-totally continuous, then $g \circ f:X \rightarrow Z$ is strongly βgc^* -continuous.

Proof: Assume that $f:X \rightarrow Y$ is strongly $R\beta gc^*$ -continuous and $g:Y \rightarrow Z$ is semi-totally continuous. Let V be a closed set in Z . This implies, V is semi-closed in Z . Therefore, $g^{-1}(V)$ is clopen in Y . This implies, $g^{-1}(V)$ is regular-closed in Y . Therefore, $f^{-1}(g^{-1}(V))$ is strongly βgc^* -closed in X . That is, $(g \circ f)^{-1}(V)$ is strongly βgc^* -closed in X . Hence $g \circ f$ is strongly βgc^* -continuous.

IV. CONCLUSION

In this paper we have introduced strongly Regular β -generalized c^* -continuous mappings in topological spaces and studied some of their basic properties. Also, we have discussed the relation of strongly Regular β -generalized c^* -continuous mappings with near continuous mappings in topological spaces.

V. REFERENCES

- [1]. M.E. Abd El-Monsef, S.N. El-Deeb and R.A. mahmoud, " β -open sets and β -continuous mappings", Bull. Fac. Sci. Assiut univ. 12(1983), 77-90.
- [2]. D. Andrijevic, "Semi pre open sets", Mat. Vesnik, 38(1986), 24-32.
- [3]. S.S. Benchalli and U. I Neeli, "Semi-totally Continuous function in topological spaces", Inter. Math. Forum, 6 (2011), 10, 479-492.
- [4]. J. Dontchev, M. Ganster and I. L. Reilly, "More on almost s-continuity", Indian Journal of Mathematics, 41 (1999), 139-146.

- [5]. J. Dontchev, Survey on Pre-open Sets, "The proceedings of the Yatsushiro Topological Conference", (1998), 1-18.
- [6]. Hula M salih, "Semi-totally Semi-continuous functions in topological spaces", AL-Mustansiriya university college of Education, Dept. of Mathematics.
- [7]. R.C. Jain, "The role of regularly open sets in general topological spaces", Ph.D. thesis, Meerut University, Institute of advanced studies, Meerut-India, (1980).
- [8]. N. Levine, "Strong continuity in topological space, Amer. Math. Monthly", 67 (1960), 269.
- [9]. N. Levine, "Semi-open sets and semi-continuity in topological space, Amer. Math. Monthly", 70 (1963), 39-41.
- [10]. S. Malathi and S. Nithyanantha Jothi, "On c^* -open sets and generalized c^* -closed sets in topological spaces", *Acta ciencia indica*, Vol. XLIIIM, No.2, 125 (2017), 125-133.
- [11]. S. Malathi and S. Nithyanantha Jothi, "On generalized c^* -open sets and generalized c^* -open maps in topological spaces", *Int. J. Mathematics And its Applications*, Vol. 5, issue 4-B (2017), 121-127.
- [12]. S. Malathi and J. Maheswari, "On Strongly β -generalized c^* -closed sets in topological spaces, *International Journal of Mathematics Trends and Technology*", Vol. 67 Issue 6, (2021), 190-194.
- [13]. G. B. Navalagi, A.S. Chandrashekappa and S.V. Gurushantanavar, On "gspr closed sets in topological spaces, *International Journal of Mathematics and Computer Applications*", Vol. 2, No., 1-2, pp. 51-58, 2010.
- [14]. T. Noiri, B. Ahmad and M. Khan, "Almost S-continuous functions", *Kyungpook Math. Journal*, Vol. 35 (1995), 311-322.
- [15]. T. M. Nour, (1995), "Totally semi-continuous function", *Indian J. Pure Appl.Math.*, 7, 26, 675-678.
- [16]. S. Tahiliani, "On $\pi g\beta$ -closed Sets in topological spaces", *Note di Mathematica*, Vol. 30 (1) (2010), 49-55.
- [17]. M. K. Singal and A. R. Singal, "Almost continuous mappings", *Yokohama Math. .*, Vol. 16 (1968), 63-73.
- [18]. M. Stone, "Application of the theory of Boolean rings to general topology", *Trans. Amer. Math. Soc.*, 41(1937), 374-481.
- [19]. V. Zaitsev, "On Certain classes of topological spaces and their bicompleteifications", *Dokl. Akad. Nauk. SSSR*, 178(1968), 778-779.

International Conference on Advances in Mathematical Sciences (ICAMS2021)

4th, 5th, 6th October 2021

Organized By

Department of Mathematics, K. D. K. College of Engineering
Great Nag Road, Nandanvan, Nagpur, Maharashtra, India

Certificate of Participation

Ref : ICAMS2021/Certificate/7588

06-Oct-2021

This is to certify that **S. Malathi** has presented a research paper entitled '**On Strongly $R\beta gc^*$ -Continuous Mappings in Topological Spaces**' in the ICAMS-2021 held during 4th, 5th, 6th October 2021, Department of Mathematics, K. D. K. College of Engineering, Great Nag Road, Nandanvan, Nagpur, Maharashtra, India

Editor-in-chief
IJSRSET
<https://ijsrset.com>

International Journal of Scientific Research in Science, Engineering and Technology

CERTIFICATE OF PUBLICATION

Ref : IJSRSET/Certificate/Volume 9/Issue 77588

06-Oct-2021

This is to certify that **S. Malathi** has published a research paper entitled '**On Strongly R^{pgc}-Continuous Mappings in Topological Spaces**' in the International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Volume 9, Issue 7, September-October-2021.

This Paper can be downloaded from the following IJSRSET website link

<https://ijsrset.com/IJSRSET21979>

IJSRSET Team wishes all the best for bright future

